Conversion of Dupin Cyclide Patches into Rational Biquadratic Bézier Form

نویسندگان

  • Sebti Foufou
  • Lionel Garnier
  • Michael J. Pratt
چکیده

This paper uses the symmetry properties of circles and Bernstein polynomials to establish a series of interesting barycentric properties of rational biquadratic Bézier patches. A robust algorithm is presented, based on these properties, for the conversion of Dupin cyclide patches into Bézier form. A set of conversion examples illustrates the use of this algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conversion of biquadratic rational Bézier surfaces into patches of particular Dupin cyclides: the torus and the double sphere

Toruses and double spheres are particular cases of Dupin cyclides. In this paper, we study the conversion of rational biquadratic Bézier surfaces into Dupin cyclide patches. We give the conditions that the Bézier surface should satisfy to be convertible, and present a new conversion algorithm to construct the torus or double sphere patch corresponding to a given Bézier surface, some conversion ...

متن کامل

Conversion d'un carreau de Bézier rationnel biquadratique en un carreau de cyclide de Dupin quartique

Dupin cyclides were introduced in 1822 by the French mathematician Pierre-Charles Dupin. They are algebraic surfaces of degree 3 or 4. The set of geometric properties of these surfaces has encouraged an increasing interest in using them for geometric modeling. A couple of algorithmes is already developed to convert a Dupin cyclide patch into a rational biquadratic Bézier patch. In this paper, w...

متن کامل

Rational Bézier Formulas with Quaternion and Clifford Algebra Weights

We consider Bézier-like formulas with weights in quaternion and geometric (Clifford) algebra for parametrizing rational curves and surfaces. The simplest non-trivial quaternionic case of bilinear formulas for surface patches is studied in detail. Such formulas reproduce well known biquadratic parametrizations of principal Dupin cyclide patches, and are characterized in general as special Darbou...

متن کامل

Obtainment of Implicit Equations of Supercyclides and Definition of Elliptic Supercyclides

The use of Dupin cyclides and supercyclides in CAGD applications has been the subject of many publications in the last decade. Dupin cyclides are low degree algebraic surfaces having both parametric and implicit representations. In this paper, we aim to give the necessary expansions to derive implicit equations of supercyclides in the affine as well as in the projective space starting from equa...

متن کامل

From Dupin Cyclides to Scaled Cyclides

Dupin cyclides are algebraic surfaces introduced for the first time in 1822 by the French mathematician Pierre-Charles Dupin. They have a low algebraic degree and have been proposed as a solution to a variety of geometric modeling problems. The circular curvature line’s property facilitates the construction of the cyclide (or the portion of a cyclide) that blends two circular quadric primitives...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005